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Abstract
In this paper we present an accurate model for the leakage current of a logic 
gate  using  Neural  Networks.  Our  model  captures  the  effect  of  process  
variations, which include inter die and intra gate variations and the effect of  
supply voltage and hence it provides a very efficient tool for analysis of circuits  
that implement Dynamic Voltage Scaling (DVS). Further, for a particular gate,  
importance of leakage dependence on the input vector is brought out. We then  
present  a  technique  to  logically  reduce  the  number of  models  by  modelling  
different  kinds  of  stacks  present  in  the library.  Results  show that  the neural 
network can model the distribution of the leakage current of gates to a high  
degree of accuracy with the error in mean being less than 1% and variance  
being less than 4%. It was found that Monte Carlo on our model was up to 150 
× faster than Monte Carlo with SPICE.
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1. Introduction
  Statistical analysis has taken over static analysis in digital design in nano-scale 
circuits, owing to the increasing impact of manufacturing variations. Statistical 
timing analysis has been studied in great depth for a considerable amount of 
time 5, but only recently has statistical leakage analysis gained some attention. 
As predicted in [1] leakage power will be a major contributor to the total power 
and shrinking transistor sizes makes this leakage power more difficult to predict. 
Variations  in  effective  gate  length,  Le,  oxide  thickness,  Tox,  and  threshold 
voltage VTH can result in up to 20× variations in the leakage of the manufactured 
chips [2].
  In the past few years considerable amount of work has been done in building 
models that predict leakage accurately. The empirical technique described in [3] 
captures the effect of variations in the effective gate length Le and provides a 
simple  analytical  method  to  statistically  analyze  leakage  but  cannot  handle 
variations in multiple parameters. [4] provides a generic framework to handle 
variations  in  multiple  process/  random  parameters  but  does  not  include 
deterministic variations like supply voltage. With extensive usage of Dynamic 
Voltage  Scaling  (DVS),  a  model  that  can  capture  variations  for  a  range  of 
voltages is very useful.
 Another  area  of  interest  in  the past  few years  has  been the  dependency of 
leakage current of a particular gate on the input vector combination. The most 
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obvious and straight forward technique is to index the leakage models by input 
vector. Another method is to assume average value of leakage current over all 
possible input vectors 5, which is highly inaccurate since all input vectors do not 
occur with equal probability. [5] proposes an analytical technique to estimate the 
leakage current of stacks based on the underlying device physics equations. The 
model was done for the static case and assumes that an NMOS transistor is OFF 
iff its gate voltage is zero which is not true as will be explained later. This leads 
to significant errors in predicting leakage.
  In this paper, we propose a technique that empirically captures the effect of 
underlying process variations and additionally captures the variations in supply 
voltage/temperature as well. We use Neural Networks [7] to empirically model 
the  leakage  current.  [8]  used  Neural  Networks  to  model  delay  of  gates;  we 
extend  the  idea  to  model  a  gate’s  leakage  current.  Further  we  propose  a 
technique to reduce the number of models required to capture the dependency of 
the leakage current on the input vector.
 The rest of the paper is organized as follows: The following section describes 
the  components  of  leakage  and  the  effect  of  variations  on  them.  Section  3 
describes the neural network models used to model the sub-threshold leakage 
current of a gate. In section 4 we describe a method to reduce the number of 
models required to model a gate completely for all possible input combinations. 
Our conclusions are presented in section 5.

2. Impact of process, environmental and input vectors 
on leakage

The major components of leakage in CMOS circuits are broadly classified as 
[11], sub-threshold leakage, gate leakage and band to band leakage.

2.1.Components of leakage
 Sub-threshold leakage current varies exponentially with VTH. Scaling in recent 
times has forced VTH to come down drastically and hence increased leakage by 
orders of magnitude.
 Gate  leakage  results  from  electrons  tunnelling  through  the  oxide.  The 
probability of electrons tunnelling through the oxide increases with decreasing 
oxide  thickness.  Expressions for  Gate  leakage  and  sub-threshold current  can 
found in [11, 12]. Band to band tunnelling is also becoming a significant leakage 
component due to heavy doping in the source and drain regions.
 A  study  from  Intel  Corporation  shows  that  leakage  power  will  contribute 
approximately 50% of the total power in the 90nm technology node [3]. It is 
thus  important  to  accurately  model  leakage  power.  Further,  leakage  power 
depends exponentially on certain device parameters and hence very sensitive to 
process, temperature and supply voltage variations. With growing uncertainty in 
process parameters accurate estimation of leakage current becomes challenging.



2.2.Process Variations

2.2.1.Inter-die, Intra-gate and Intra-die variations
Inter-die variations [10] refer to variations that occur across dies, wafers or lots. 
The  variation  introduced  is  the  same  across  the  entire  die.  These  variations 
include gate-length variations due to fluctuations in the time of exposure during 
fabrication. Intra-die [10] variation, as the name suggests, refers to variation of a 
particular  parameter  within  the  die.  Intra-die  variations  are  usually  spatially 
correlated and all transistors within a gate have the same variation. Intra-gate 5 
variations refer to transistor to transistor variations within a gate. The impact of 
intra-gate variations on statistical analysis is a drastic increase in the number 
random variable needed to model them. Each transistor within a gate will now 
have one random variable per intra-gate process parameter. A process parameter 
considering all types of variations can be expressed as

Pij = Pnom + Δ Pinter-die + ΔPintra-die
i + Δ Pintra-gate

ij …….. (1)
Where Pnom is the nominal value of the process parameter. ΔPinter-die is a zero mean 
Random Variable (RV) which captures the effect of inter die variations. The 
zero-mean RV, ΔPintra-die

i models the intra die variation for the ith gate and ΔPintra-

gate
ij captures intra gate variation of the jth transistor of the ith gate.  

  Our work is addressed towards modelling leakage for a logic gate and currently 
accounts for inter-die and intra-gate variations only. It can easily be extended to 
handle  intra-die  variations  also,  provided  they  can  be  de-correlated  using 
techniques like PCA or KLE [4]. The de-correlated intra-die parameters are then 
treated as inter-die parameters at gate level.
To  illustrate  the  impact  of  inter-die  and intra-gate  variations  on the  leakage 
current, a NAND4 gate has a nominal leakage of 95.7 pA in a 130 nm process. 
With an intra-gate variation introduced in the VT0 parameter, with 3σ equal to 
10% of its mean, there is a spread in the leakage current with mean 94.8 pA and 
standard deviation 10.4 pA. When an inter die variation is  introduced in the 
effective gate Length (Le), A 3σ of 5% of the nominal gate length results in a 
distribution of the leakage with mean 94.7 pA and standard deviation of 1.5pA.

2.2.2.Voltage and Temperature
Leakage is a strong function of voltage and temperature. The leakage of a four 
input NAND gate with an input "0011" varies from 204 pA to 250 pA when the 
voltage changes from 0.6 V to 1.2 V. Similarly, leakage is a strong function of 
temperature  too.  Afore  mentioned  leakage  currents  were  measured  at  room 
temperature i.e. 250 C. Under otherwise identical conditions, a leakage of 250 
pA through a four input NAND gate, at 250 C, can shoot up to 3.14 nA at 1000 

C. It is clear from the above data that to be able to predict leakage accurately, we 
need a model that can capture the dependence of leakage on inter die process 
parameters,  intra  gate  process  parameters,  voltage  and  temperature.  In  the 
current  literature  no  model  can  capture  the  effect  of  all  these  parameters 
together. 



2.2.3.Input Vector
Another  important  factor  that  the 
leakage  depends  on  is  the  input 
vector.  Shown  in  Table.  1  is  the 
leakage  current  of  a  four  input 
NAND  gate  for  all  possible  input 
combinations. The lowest leakage is 
obtained  when  the  input  is  "0000" 
(88 pA) and the highest is when the 
input is set to "1110" (719.5 pA). Up 
to  10×  increase  in  leakage  can  be 
obtained  by  simply  changing  the 
input to the gate. It is thus extremely 
important to consider the effect of the 
input  vector  and  build  models 
accordingly.

3. Leakage modelling - Neural Networks
Neural  networks  have  been  used  for  over  a  decade  in  pattern  recognition 
applications. The ability of a neural network to model complex systems, which 
are  dependent  on  a  number  of  parameters,  makes  it  a  good  candidate  for 
statistical modelling. It is well known that any continuous function f(x), where x 
is an input vector, can be modelled very well by a neural network with a single 
hidden layer [7] even for a non-linear functions. The BSIM3 equation for the 
leakage  current  is  a  smooth  continuous,  but  non  linear,  function  of  the 
underlying process parameters and hence it is expected that the leakage current 
of a gate can be modelled well by a neural network. In [4] the dependence of the 
leakage current on the random process parameters is modelled very well by the 
polynomial chaos expansion. However it does not capture the dependence on the 
supply  voltage/  temperature.  [9]  models  the  dependence  of  temperature  and 
voltage  accurately  but  does  not  capture  process  dependent  parameters. 
Modelling  leakage  with  neural  networks  has  the  advantage  of  capturing 
variations of process parameters and supply voltage together making it a suitable 
model when used for statistical analysis along with DVS.
 An Artificial Neural Network (ANN), simply known as a neural network, has 
one input layer, few hidden layers and an output layer [7]. In this work, we have 
a used an ANN with a single hidden layer as shown in Figure.1. Further details 
about an ANN with a single hidden layer can be found in [7].

3.1. Training and Testing the Neural Network

Input ISUB (pA) Input ISUB (pA)
0000 88 0001 123.3
0010
0100
1000

124.1
124.0
124.0

0011
0101
1001

204.2
205.2
205.1

0110
1010
1100

210.4
210.3
210.3

0111
1011
1101

591.6
602.4
621.5

1110 719.5 1111 519.7

Table 1: NAND4 Leakage vs Input vector



Figure 1:  Training a Neural Network with a single hidden layer

The  basic  structure  of  the  training  algorithm is  shown  in  Figure  1.  Data  is 
generated through Monte Carlo simulation in SPICE and then a fraction of the 
generated data is used to train the ANN. We use the standard back propagation 
algorithm [7] for training. We train the ANN till the error is within acceptable 
limits.  Depending on the implementation of  the back propagation algorithm, 
repeated training of the ANN can produce different results. Thus it is important 
to  stop  the  training  once  an  acceptable  error  has  been  obtained.  During  the 
process of training, all  the weight matrices are updated. Once the training is 
done, these values are fixed for a given gate. Having trained the ANN, it needs 
to be tested with a different data set. As mentioned earlier, we used a fraction of 
the SPICE data for training the ANN. We therefore use the rest of the data to 
test it. If the error between the SPICE leakage and the one predicted by the ANN 
is not acceptable we have to re-train the ANN either by changing the number of 
hidden neurons or simply starting with a different initial weight vector. In our 
case the latter was used to re-train the ANN. It was, however, observed that 
amongst the gates that we trained we did not have to re-train the ANN for any 
gate more than twice.

3.2. Results
We have modelled the leakage current of a few basic gates for all possible input 
combinations.  The BSIM3 leakage model of an industrial 130nm technology 
was used with HSPICE to generate Monte Carlo data samples. MATLAB's in 
built ANN toolbox was used to train and create the Neural Network model. We 
used  the  tan-sigmoid  function  as  the  ANN’s  activation  function.  The  Tan-
Sigmoid function is given by

ϕ (x) = tanh(x)
Simulations were carried out on a machine with Intel P4 processors and 512 MB 
RAM.

3.2.1.Supply voltage variation
Our models take into account intra gate variations in three process parameters, 
namely, effective gate length (Le), oxide thickness (Tox) and threshold voltage 
(VTH)  of  the  transistor.  Further  we  have  assumed  an  independent  inter  die 
variation in the gate length. Thus if a gate consists of N transistors, the ANN 
will have to capture the effect of 3N+1 random parameters along with the effect 
of - supply voltage (VDD). According to ITRS [1], all random parameters have a 
3σ variation of 10% of their mean. While the nominal supply voltage is 1.2 V 



we consider an extended supply range of 0.6 to 1.2V to model the gate in order 
to support DVS. During the testing phase the supply voltage is held constant at 
some desired value and all other parameters vary according to their distributions.
 The input and output data were normalized before training the ANN. If X is a 
parameter (either input or output) then the data was normalized according to 

XNORM = X/[max(X) - min(X)]
Thus  the ANN was  trained  with XNORM as  its  input/  output.  The  number  of 
hidden Neurons in all our ANN’s is I+1 where I is the number of inputs to the 
ANN.
 The training and testing data set was generated through 5000 SPICE Monte 
Carlo simulations and we used 30% of them for training the ANN and the rest 
for testing the model. All the results presented here are on the testing data. The 
training and testing data sets are disjoint. While training the ANN, all random 
parameters vary according to the distribution they come from, which we have 
assumed as Gaussian. But the supply voltage varies from 0.6 V to 1.2 V in steps 
of  0.4 mV. Fig 2 shows the actual  and predicted leakage current  probability 
distribution functions(PDF) of a four input NAND gate for two different supply 
voltages  (0.6  V  and  1.2  V).  The  input  vector  was  set  to  "0011"  and  at  a 
temperature to 250 C. A more detailed result for other input vectors is presented 
in section 5.
 Including both voltage and temperature in the model introduces unacceptable 
error and we either include voltage or temperature into the model. However, it is 
not necessary to model temperature over a continuum of values. The area on a 
chip can be divided into a few regions,  in each of which the temperature is 
essentially constant. Areas where there is a lot of activity will result in high 
temperatures and other areas will be at much lower temperature. Thus we would 
only encounter a small and finite set of temperature regions for which we can 
have models indexed by the temperature. However, we could model the effect of 
temperature and index by voltage if the afore mentioned assumption does not 
hold. The next result shows that the ANN is able to capture variations in process 
and temperature with supply held constant.

3.2.2.Temperature variation
All process parameters (Le, TOX, VTH) varied according to Gaussian distributions 
with 3σ equal to 10% of their mean. Like in the previous model an independent 
inter die Gaussian variation was introduced in the gate length. Here the supply 
voltage was held constant at 1.2 V and the temperature was varied from 0-1000 

C in steps of 0.0670C. The training and testing phase are identical to the previous 
section. Fig. 2 shows the actual and predicted PDFs of a NAND4 gate at four 
different temperatures (250 C, 500 C, 750 C, 1000 C). The input to the NAND4 
gate was "0000" and the supply was set to 1.2 V.
 It is interesting to note that the effect of temperature is greater on leakage than 
supply voltage for the 130 nm process. Yet we present our model with voltage 
as a part of it and not temperature. We only present a technique to model 
variations along with voltage. Depending on the application and accuracy 
required we could choose to model it with either voltage or temperature. 



Figure 2: Comparison of the PDF generated by SPICE and our ANN for a 
NAND4 gate at  (i) 0.6 V and 1.2 V , (ii) 250C,  500C, 750C and 1000C

4. Modelling Stacks
As mentioned earlier, an order of magnitude increase in leakage current can be 
obtained just by changing input vector. Thus a model built to predict the leakage 
for a particular input I1 may not accurately predict it for another input I2. The 
most obvious way out of this is to have one model per input vector per gate. 
Thus with a NAND4, NAND3 and NAND2 gate we require 28 models in all to 
predict the leakage of the three gates for any input combination. We now present 
a technique to reduce the required number of models. We explain the principle 
with the help of a four input NAND gate.
 Consider a four input NAND gate shown in Fig. 4.  With 4 inputs, we have a 
total of 24 input combinations. With inter die and intra gate variations that we 
have  considered,  each  input  vector  can  result  in  a  different  distribution  of 
leakage current. To model the effect of input vectors, we need a generic model 
that  can be used across gates so that  the number of models reduce. We can 
achieve this by modelling different kinds of stacks. We explain the procedure of 
using stack models to predict the leakage of a NAND4 gate. Similar arguments 
can be used for other gates. 

Figure 3: A Four Input NAND gate



 Before we proceed, it is necessary to define two new terms for sake of clarity. A 
static transistor is a transistor whose parameter variations (Le/ TOX/ VTH) do not 
result is a significant change in the PDF of the leakage current while a statistical 
transistor is one whose parameter variations result in a significant change in the 
PDF of the leakage current. We now consider all possible input combinations 
and explain the technique to reduce the number of models required.

4.1. Input vector(0000)
In this state all  four NMOS transistors are turned OFF while all  four PMOS 
transistors  are  turned  ON  and  are  as  good  as  short  circuits  [5].  As  far  as 
statistical leakage modelling is concerned it is a valid assumption to treat these 
PMOS  transistors  as  static  transistors  and  the  four  NMOS  transistors  as 
statistical transistors because the leakage current is determined by one or more 
OFF transistors on the stack. The ON transistors have sufficient gate overdrive 
that any variations in their parameters cannot affect the leakage. Thus to predict 
the leakage PDF of a NAND4 gate, for the input vector 0000, we need to model 
a four transistor NMOS stack, which we will refer to as  n4/0. The "0" in the 
model name refers to the input vector applied to the stack. In this paper we will 
treat the input to the transistor which closest to the output as the LSB and the 
one closest to VDD/GND as the MSB.

4.2. Input vectors (1000 / 0100 / 0010)
Here the top most transistor, N4, has its gate connected to gnd and the one of the 
other 3 NMOS transistors have their gates connected to VDD. At least one PMOS 
transistor is completely turned on in all three cases and hence forces the other 
three parallel PMOS transistors to behave as static transistors. Similarly the one 
NMOS transistor that has its gate connected to VDD behaves as a short circuit 
and can be treated as a static transistor. Thus to predict the leakage for this set of 
input combinations we need to model a 3 transistor NMOS stack with all inputs 
grounded i.e. we need to model an n3/0. However we have to scale the currents 
by an appropriate factor as the widths of the transistors are lesser for the n3/0 
model when compared to the widths of the NAND4 gate. This scaling factor can 
be obtained by simply measuring the leakage current through the NAND4 gate 
with its input set to "1000" and dividing it  by the leakage current that flows 
through  the  three  transistor  NMOS  stack  with  its  input  set  to  "000".  Both 
currents  have  to  be  measured  with  all  other  process  parameters  set  to  their 
nominal values.

4.3. Input vector (0001)
With the gate of the top most transistor N4 connected to VDD  [5] treats N4 as a 
short circuit. Unfortunately the N4 is trying to pass VDD and it will  turn off  as 
soon as the source charges up to VDD- VTH. We are thus left with a case where 
the bottom three transistors are turned off as their gates are grounded and the top 
most transistor is turned off even though its gate is connected to VDD. Hence we 
need  to  model  a  four  transistor  NMOS stack  with  the gate  of  the  top most 
transistor connected to VDD which will be called as n4/1.



4.4. Input vectors (1100 / 1010 / 0110)}
As predicted by [5] the two transistors with their gates connected to VDD can be 
treated as short circuits and hence as static transistors which reduce the NMOS 
stack to a 2 transistor NMOS stack  n2/0. Accounting for the difference in the 
widths of the 2 transistor NMOS stack and the NAND4 gate we can scale the 
currents predicted the n2/0 model to predict the NAND4 leakage for these input 
vector combinations. The scaling factor is obtained as mentioned in the earlier 
case.

4.5. Input vectors (1001 / 0101 / 0011)
Just as in the 0001 case we observe that the top most transistor is turned off even 
though its gate is connected to VDD. Hence we need to have a model n3/1 with 
appropriate scaling to predict the leakage for this combination.

4.6. Input vectors (0111 / 1011 / 1101)
The leakage current is dominated by a single transistor whose gate is connected 
to ground. We would expect the model  n2/1 to predict the leakage for these 
input combinations. But unfortunately the DIBL effect on the transistor whose 
gate is grounded is different in all three cases and hence there is a significant 
deviation in the PDF predicted by the n2/1 model. As can be seen from Fig 4, 
transistor  N1  dominates  the  leakage  in  the  0111  case.  Let  the  drain  source 
voltage across it  be VDS1.  In the 1011 case N2 dominates the leakage, let the 
drain source voltage across N2 be VDS2. Similarly the leakage in the 1101 case is 
dominated by N3 and let the drain source voltage across N3 be VDS3. In the 0111 
case all four transistors are OFF and the VDD drop is across all four transistors. In 
the 1011 case the bottom transistor, N1, is ON and is essentially a short circuit 
and hence the VDD drop is across three transistors (N2, N3 and N4), similarly, in 
the 1101 case the VDD drop is across N3 and N4 alone. Hence VDS1 < VDS2 < 
VDS3,  which  implies  that  the  effect  of  DIBL increases  as  the  OFF transistor 
moves up the stack i.e. I0111 < I1011 < I1101 as can be seen from Table. 1. We, 
therefore, need a separate model for these three input vectors.
 A NAND4 gate behaves like an inverter with its input set to “111X” (X =0 or 
1). Hence its leakage corresponding to the input vectors “1110” and “1111” can 
be predicted using an ANN model that predicts leakage of a unit inverter. 
  From the above discussion it is clear that we need to model all kinds of stacks 
for a selected few input combinations to be able to predict the leakage of any 
gate.  A NAND3 and NAND2 gate  will  re-use  most  of  the  stack  models  to 
predict their leakage currents. For example, a NAND3 gate with its input set to 
"100" and a NAND2 gate with its input set to "00" will use the same n2/0 stack 
model that the NAND4 used when its input is set to "1100". Similar arguments 
will explain the re-use of stack models for other input vectors as well. PMOS 
stack models can similarly be used to predict leakage of NOR gates.

4.7. Results
Shown in Table. 2 is a comparison between the results obtained from HSPICE 
and that predicted by our ANN model different gates two input vectors i.e. the 
input vector that gives minimum and maximum mean and std dev error. Our 



ANN model captures all process variations and supply voltage (0.6 - 1.2 V). All 
the results presented are for a supply voltage of 0.9V and a temperature of 250 C.
 The columns in Table 2 have the following meaning

• Gate – Name of the gate
• Input - Decimal value of Input to the gate
• Model - The stack model used to predict the leakage
• μSP - Sample mean obtained from SPICE simulation
• μANN - Sample mean obtained from our ANN model
• σSPICE - Sample standard deviation obtained from SPICE simulation
• σANN - Sample standard deviation obtained from the ANN model
• Δμ - Percentage error between the μSP and μANN

• Δσ - Percentage error between the σSP and σANN

 The ANN stack models predict the mean and standard deviation of a gate for a 
particular input vector combination very accurately. A single stack model, say 
n2/0, is able to predict the leakage current PDF accurately for 6 different cases 
i.e. NAND4-(1100, 1010, 0110), NAND3-(100, 010) and NAND2(00). For a set 
of NAND gates (4, 3 and 2 input) we trained a total of 8 different stack models 
to predict the leakage PDFs for 22 different input vectors. From Table 2 we can 
see that the error in μ and σ is greater when the two stack models are used to 
predict  the leakage for  a  4 input  gate.  This is  expected;  as we are trying to 
predict  the  leakage  distribution  caused  by  variations  in  16  transistors  by 
considering variations in just two transistors. But, the error is very much within 
acceptable limits.  Similar interpretation can be given for  the other gates and 
models as well. It was found that Monte Carlo on our model of a NAND4 gate 
was 150 × faster than Monte Carlo with SPICE.

5. Conclusion
The Neural Network model captures the variations in all process parameters and 
is able to predict the PDF of the leakage current accurately. The predicted mean 
and standard deviation was erroneous by less than 1% and 4% respectively. 
Further it is also able to handle dependency of the leakage current on supply 
voltage, which not only makes the ANN model a good statistical model but also 
a  good  candidate  as  a  voltage  scalable  model.  We  further  established  that 
modelling all kinds of stacks can accurately predict the PDF of a gate for any 
given input combination, there by reducing the required number of models. The 
ANN is 150 × faster than SPICE and hence a valuable model to use.
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Gate I/p Model μSP (pA) μANN 

(pA)
Δμ
(%)

σSP 
(pA)

σANN 

(pA)
Δσ
(%)

NAND4 0* n4/0 90.51 90.51 0.00 20.46 20.44 0.09
NAND4 13 n2/1 1015.87 1028.02 1.2 387.74 401.60 3.5
NAND3 0* n3/0 89.01 88.98 0.04 23.18 23.17 0.05
NAND3 5 n2/1 556.21 558.77 0.46 222.66 228.31 2.54
NAND2 0* n2/0 98.86 98.86 0.01 32.82 32.81 0.05
NAND2 1 n2/1 349.24 349.20 0.01 140.36 140.69 0.23
NOR4 2 p2/2 1457.62 1445.64 0.82 700.33 694.72 0.80
NOR4 15 p4/15 98.45 98.46 0.00 24.78 24.77 0.05



*
NOR3 2 p2/2 711.91 710.41 0.21 341.42 342.33 0.27
NOR3 7* p3/7 96.83 96.83 0.00 27.91 27.94 0.10
NOR2 2 p2/2 430.15 403.22 0.02 190.91 191.56 0.34
NOR2 3* p2/3 103.91 103.88 0.03 37.69 37.75 0.15

Table 2: Mean and Std Dev – Best and Worst case error details.  

* Input vector for which mean and std dev error is minimum. 
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