DC Transfer Curve

And its applications
Basic Transistor Equations

\[\beta = \mu C_{ox} \frac{W}{L} \]

\[V_{GT} = V_{gs} - V_t \]

\[I_{ds} = \begin{cases}
0 & V_{gs} < V_t \quad \text{Cutoff} \\
\beta (V_{GT} - V_{ds}/2) V_{ds} & V_{ds} < V_{dsat} \quad \text{Linear} \\
\frac{\beta}{2} V_{GT}^2 & V_{ds} > V_{dsat} \quad \text{Saturation}
\end{cases} \]
DC Transfer curve

Relation between V_{out} and V_{in} under DC conditions
Graphical Approach

(b) I_{dsn}, $|I_{dsp}|$

V_{in0}, V_{in1}, V_{in2}, V_{in3}, V_{in4}, V_{in5}

V_{out}, V_{DD}
The transfer curve

Transistor’s regimes of operation
Current drawn from supply

\[I_{DD} \]

\[V_{in} \quad V_{DD} \]
Beta ratio effects

\[\frac{\beta_p}{\beta_n} = 0.1 \]

\[\frac{\beta_p}{\beta_n} = 10 \]

\[\frac{\beta_p}{\beta_n} = 2 \]

\[\frac{\beta_p}{\beta_n} = 1 \]

\[\frac{\beta_p}{\beta_n} = 0.5 \]
Vinv: Inverter Trip Point

\[\frac{\beta_p}{\beta_n} = 0.1 \]

\[\frac{\beta_p}{\beta_n} = 10 \]

\[\beta_p \]

\[\beta_n \]

\[V_{in} \]

\[V_{out} \]

\[V_{DD} \]

\[Vinv \]

\[V_{DD} \]

\[0 \]

\[0.5 \]

\[1 \]

\[2 \]
Vinv calculation

\[I_{dn} = \frac{\beta_n}{2} \left(V_{inv} - V_{tn} \right)^2 \]

\[I_{d\phi} = \frac{\beta_{\phi}}{2} \left(V_{inv} - V_{DD} - V_{t\phi} \right)^2 \]

\[r = \frac{\beta_{\phi}}{\beta_n} \]
$V_{\text{inv}} = \frac{V_{DD} + V_{tp} + V_{tn} \sqrt{\frac{1}{r}}}{1 + \sqrt{\frac{1}{r}}}$
Skewed Inverters

\[\frac{\beta_p}{\beta_n} = 0.1 \]

\[\beta_p = 10 \]

Lo-Skew

Hi-Skew

\[V_{DD} \]

\[V_{out} \]

\[V_{in} \]

\[V_{inv} \]
Process Variations

• Threshold voltages are random variables
 – Gaussian pdf is a good approximation

• Consequentially, inverter trip point (V_{inv})
 – Is also a random variable
 – As are other characteristics which depend on threshold
Voltage to logic levels

![Graph showing voltage to logic levels with labels V_{out}, V_{DD}, V_{OH}, V_{OL}, V_{tn}, V_{IL}, V_{IH}, V_{DD} - V_{DD}, and V_{in}. Unity Gain Points with slope = -1. Circuit diagram with symbols for V_{in} and V_{out}.]
Noise Margin Definitions

Output Characteristics
- Logical High Output Range
 - V_{OH}
 - $NM_H = V_{OH} - V_{IH}$
- Logical Low Output Range
 - V_{OL}
 - $NM_L = V_{IL} - V_{OL}$

Input Characteristics
- Logical High Input Range
 - V_{DD}
- Logical Low Input Range
 - GND

Indicates tolerance to noise
Why is there noise?

• DC Noise due to static voltage drops in the power grid

• AC noise:
 – due to coupling of switching signals
 – Transients in power grid
Importance of gain

• Larger gain better noise margin
• Restoring effect of logic levels in a long chain
• Large V_t – better gain
Static Noise Margin for Memory Cell

Butterfly Diagram

SNM = 0.32 V